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Abstract

Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differ-
ential equations (PDEs) solved on large computational domains by clustering mesh points only where
required by large gradients. Previous work has indicated that fourth-order convergence can be achieved
on such meshes by using a suitable combination of high-order discretizations, interpolations, and fil-
ters and can deliver significant computational savings over conventional second-order methods at en-
gineering error tolerances. In this paper, we explore the interactions between the errors introduced by
discretizations, interpolations and filters. We develop general expressions for high-order discretizations,
interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order
SAMR implementation. We derive a formulation for the necessary interpolation order for given dis-
cretization and derivative orders. We also illustrate this order relationship empirically using one and
two-dimensional model problems on refined meshes. We study the observed increase in accuracy with
increasing interpolation order. We also examine the empirically observed order of convergence, as the
effective resolution of the mesh is increased by successively adding levels of refinement, with different
orders of discretization, interpolation, or filtering.
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Using high-order methods on adaptively refined
block-structured meshes – discretizations,

interpolations, and filters

1 Introduction

Numerical solution of space-time, partial differential equations (PDEs) is a very common undertaking. Us-
ing the method of lines and possibly finite-difference techniques applied to the spatial operators, one solves
a large system of ordinary differential equations (ODEs). A critical aspect of solving these sometimes enor-
mous problems is the efficiency of the spatial discretization. Ideally, one first establishes an error tolerance
requirement for the simulations and then sets about the task of finding the method that will reliably deliver
this tolerance at the minimum cost. In general, there are two simple guiding ideas to consider; high-order
methods become relatively more efficient as error tolerances are reduced and grid points should be allo-
cated more generously to less smooth parts of the solution. Combining these two in simple geometries,
we will consider high-order spatial discretizations in conjunction with adaptive mesh refinement (AMR) for
solution of PDEs having substantial spatial variation in smoothness. In particular, we will use Structured
Adaptive Mesh Refinement (SAMR) [1, 2], where a layered hierarchy of rectangular uniform-mesh patches
is used to discretize the domain. While this approach resolves a domain efficiently by refining a grid only
where required, one would also like to minimize the number of mesh levels and this is facilitated by higher-
order methods. Large multiphysics problems are typically solved on distributed memory parallel computers.
These require that the domain of the solution be decomposed amongst processors in a load-balanced manner.
If one tries to achieve a given spatial error tolerance by refining repeatedly, one gets localized regions of very
high mesh density, distributed within an otherwise coarse mesh. This strongly inhomogeneous grid poses
a challenge to domain-decomposition parallel load-balancing algorithms, which frequently fail to achieve a
scalable decomposition. Thus, while AMR does allow one to concentrate mesh density in regions of interest,
a certain moderation in its use adds tremendously to the ease and speed of computation.

Although adaptive mesh spatial discretizations are not new, high-order (i.e. � 2) versions of them are
not common. If one forgoes domains with intricate geometries, one may use block-structured adaptive
meshes and exploit the mesh’s regularity to consider high-order finite difference methods. [3] addresses the
problem of solving the Poisson equation to fourth order accuracy on block-structured adaptively refined
meshes. Starting with a classical Mehrstellen method, the authors develop and test a fourth order solution
methodology for the Poisson equation in 2D and 3D. Tests were done on an adaptive mesh (coarse base
mesh with one extra level of refinement) and fourth order convergence was predicted theoretically and
demonstrated empirically. Interpolations at coarse-fine boundaries were done using a sequence of high-
order 1D interpolations, some fourth and others sixth order accurate, depending upon the configuration of
patches. Their method requires that the refinement ratio between successive levels be four.

While differentiations and interpolations in structured AMR may be done using wavelets, we follow the
approach of [4, 5, 6, 7, 8] where they are performed in physical space. [6] points out that AMR is more
efficient than a traditional single grid method only when the higher wavenumber content of the flowfield is
relatively nonuniform and resides within smaller regions of the domain. Because integration variables on
each grid are eventually the result of interpolations based on local polynomials, one cannot differentiate this
interpolated data indefinitely. Interpolated data based on an order pI interpolant, which is differentiated k
times (differentiation order), results in a field with maximum differentiation order of pI � k � 1, i.e. CpI �

k � 1

7



(see appendix C). Therefore if, e.g., viscous terms are included in Navier-Stokes computations using inter-
polants and derivative operators of identical order, one may observe an order reduction to order, pD � 1,
depending on the significance and resolution of the viscous terms. Alternative approaches to high-order
AMR are discussed by Holmström [9] where wavelets are often central to the AMR procedure.

A key element of typical AMR constructions is that the more accurate solution from the finest grids is
periodically interpolated onto the coarser ones and solutions from the coarse mesh are used at coarse-fine
interfaces. The coarse-fine interface takes the form of a “halo” of cells/grid points around fine patches where
the solution is interpolated from the underlying coarse mesh. Thus, an important issue in high-order AMR
is dealing with the potential for the Runge phenomenon associated with interpolation on uniform grids.
A key result of Trefethen and Weideman [10] is that for spatial modes of the grid variables, the error in
interpolation of modes, exp � iξx � , decreases to zero as the grid density tends to infinity if and only if ξ is
small enough to provide six grid points per wavelength. This implies that high-order interpolation will only
succeed if there is active control of the spatial wavenumbers that live on the computational grid. Central to
doing this are robust refinement/coarsening criteria combined with careful addition of numerical dissipation
for an otherwise low-dissipation numerical method. This robust refinement/coarsening strategy might act
to ensure that the energy content of a grid variable above some chosen cut-off wavenumber is essentially
zero. This also places the requirement that reliable spatial error estimates be available. Wavelets are one
of the means for doing this [11]. One could, alternatively, employ right-hand-side (RHS) evaluations using
stencils of different spatial accuracies to compute a relative error measure. One could also carry on two
simultaneous computations, one on an “actual” grid and a second one on a “ghost” grid with a factor-of-
two coarser resolution. The difference of the two solutions gives an estimate of the spatial discretization
error [1]. However, approximate error estimation techniques based on first and second derivatives are more
commonly used [12]. To facilitate the interpolations required in both refinement and coarsening, several
approaches to high-wavenumber dissipation may be utilized. Filtering grid variables may be done directly
using stand-alone filters. Indirectly, it may be accomplished by using upwinded derivative operators rather
than centered-difference approximations in evaluating the RHS or a hyperviscosity term may be added. A
robust refinement/coarsening strategy along with control of numerical dissipation is essential to an efficient
high-order AMR method, but one does not appear to fully exist currently.

Several other outstanding issues must be considered when contemplating high-order AMR. One is the
proper specification of interpolant boundary closures. It is well known that elaborate boundary closures
must be used if one seeks uniformly high-order, finite-difference, first-derivative operators and time-stable
integration[13, 14, 15, 16]. What is less clear is what, if anything, is required of finite-difference interpolant
boundary closures above and beyond satisfying accuracy requirements. Do interpolant boundary closures
affect time stability of the overall method? The literature offers no guidance on this matter. Another topic
that may affect the efficiency of an AMR procedure is the selection of the Level0 grid spacing. Large initial
grid spacings imply more grid levels, more interpolations, but fewer total grid points. Lower grid point count
can be advantageous for expensive source terms like chemical reaction rates, more so if the chemical mech-
anism is stiff. If the refinement/coarsening apparatus is of high quality, interpolations are relatively cheap,
and the domain decomposition is good then a relatively larger Level0 grid spacing seems appropriate. On
the other hand, to the degree to which these three items are not met, a smaller Level0 grid spacing seems
more prudent. When determining the number of mesh levels, one must also remember that the smallest
acceptable grid spacing on any grid level is a function not just of the governing equations but also of the
numerical dissipation.

Although AMR with high order discretizations is appealing and potentially useful, it complicates the time
integration strategy. Each mesh level has its own grid spacing and consequently the stiffness of the convec-
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tive and diffusive eigenvalues vary inversely and inversely squared with the grid spacing, respectively. If
convection and diffusion are treated explicitly in time, then there will be a large range in stepsizes corre-
sponding to the stability limit based upon convection and diffusion on each grid. One may approach this by
integrating all grids with a uniform stepsize. In this way, the formal order of traditional ODE integrators is
maintained, however, the global timestep is restricted by the stability constraint on the finest grid. Alterna-
tively, a “time-refined” approach can be used, where different time step sizes are employed for each mesh
level [2]. Typically, this requires recursive integration on the various mesh levels, starting with the coarsest
level (at a timestep determined by the stability constraint of the mesh level itself), followed recursively by
the integration of its children mesh levels, which are processed more often but at their (smaller) stability-
constrained timesteps. For example, in a viscous CFL dominated problem on a 4-level SAMR mesh, the
finest grid takes 28 steps for every one on the coarsest. Generally, this approach constitutes what is known
as subcycling.but may also be approached more rigorously using partitioned multi-rate [17] methods. This
approach constitutes partitioning of the right-hand-side (RHS) at the mesh level. Applying a non-multirate
integrator in a multirate context may often return less than the formal rate of convergence. One may further
optimize the integration strategy by treating convection, diffusion, and reaction using different integration
methods. A partitioning like this is often referred to as an additive partitioning [18]. Alternatively, A- and
L-stable [19] implicit schemes may ignore stability restrictions and select step-sizes based exclusively on
accuracy and iteration concerns. Such methods usually result in linear systems which are solved by iterative
techniques.

In [20] we demonstrated, using a 1D FitzHugh-Nagumo equation, that fourth-order convergence could be
achieved on block-structured adaptively refined meshes. Details of the choice of interpolations and filters,
and the interactions between them, were omitted; instead we extended our method to more realistic problems
by solving (on 28 processors) a coupled system of 10 reaction-diffusion equations modeling the ignition of
H2 in air. The goal of this paper is to demonstrate high-order spatial convergence in multidimensions on
adaptively-refined Cartesian grids by using finite difference differentiation, interpolation, and dissipation. It
is beyond the scope of the paper to address all of the topics relevant to an efficient, high-order spatial scheme
- for example, we will not address high-order temporal discretizations or time stable boundary closures for
interpolant operators. Instead, we focus on demonstrating methods that give high-order convergence, and
begin to address effective strategies for retaining high order but avoiding Runge phenomena. Runge phe-
nomena are avoided by using dealiasing filters. In Sec. 2 we discuss specific numerical and computational
issues associated with SAMR constructions and establish the stencil coefficients of the derivatives, inter-
polants, and filters. In Sec. 3 we use these tools in different problems (the Korteweg-de Vries, and the
Kuramoto-Sivashinsky equations in 1D and a 2D FitzHugh-Nagumo equation) and analyze their efficacy.
We draw our conclusions in Sec. 4.

2 Structured Adaptive Mesh Refinement

Structured Adaptive Mesh Refinement (SAMR) [1, 2] is a particularly appealing approach to geometrically
simple spatial domains. The starting point for the method consists of laying a relatively coarse Cartesian
mesh over a rectangular domain. Based on some suitable metric, regions requiring further refinement are
identified, and the grid points are flagged and collated into rectangular children patches on which a denser
Cartesian mesh is defined. The refinement factor between parent and child mesh is usually kept constant for
a given problem. In this work, it is always specified as 2. The procedure is done recursively, so that one
ultimately obtains a hierarchy of patches with different grid densities, with the finest patches overlaying a
small part of the domain. This hierarchy will be referred to henceforth as a Grid Hierarchy or the Mesh;
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individual patches will be termed grids or patches. Individual patches may be viewed as a wireframe laid
over a rectangular domain with the dependent variables of a PDE defined at the intersection of the“wires”
(referred to as “vertex-centered grids”) or as a division of a domain into small cells, with the variables stored
at cell centers (“cell-centered” grids). We will only study vertex-centered grids in this paper. Such grids
have the property that the finer mesh grid points lie either on top of the coarse mesh grid points or at their
geometric midpoints. This may be seen in Fig. 1 where large circles correspond to the coarse mesh, and fine
mesh points are denoted by small triangles, squares, and circles requiring 1D, 2D, and 3D interpolations,
respectively. The solution at these edge-centered (triangles), face-centered (squares) and body-centered
(small circle) points, at coarse-fine interfaces/halos, are interpolated from the underlying coarse mesh (the
large circles) using a variety of interpolations techniques.

z

y
(i, j, k + 1) (i + 1/2, j, k + 1) (i + 1, j, k + 1)

(i + 1, j, k + 1/2)

(i + 1, j, k)

(i + 1, j + 1, k)(i + 1/2, j + 1, k)(i, j + 1, k)

x

Figure 1. A vertex-centered grid. The large circles are the coarse mesh,
and the fine mesh points at edge-centers, face-centers and body-centers
are represented by triangles, squares and a (small) circle.

If a constant refinement factor is used (e.g. 2), the number of grid points rises rapidly as one refines. When
used with time-refined explicit integration, SAMR-based simulations spend almost all their time in the
finest levels. Further, in parallel simulations, the requirement of keeping parents and children on the same
processor results in poor domain-partitioning by conventional partitioners. Thus, in practice, time-refined
simulations usually have shallow hierarchies (e.g. 4 deep) with a fairly dense “coarse” grid. The resulting
timestep size, determined by the stability constraints of the fine “coarse” grid is relatively small. To date,
second-order spatial discretizations have been typical for SAMR simulations on vertex- and cell-centered
grids. Accuracy has been achieved mainly by increasing mesh density, which has exacerbated the problem
of a rather fine starting mesh (henceforth called Level0 mesh) or resulted in deep hierarchies. The high-
order spatial discretizations employed in the present work will remedy this situation, reducing the requisite
resolution requirement on the Level0 mesh.

High-order SAMR has a tremendous potential to reduce resolution requirements to achieve a given level of
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accuracy. Jameson[21] has attempted to quantify the relative efficiencies of different orders-of-accuracy in
one-dimension. Table 1 in [20] contains a listing of the number of grid points needed by centered derivative
operators of various order to resolve a particular wavenumber mode to a given error tolerance; a similar table
for high-order interpolants is in Table 1. In both cases, we see that a modest increase in order (from second
to fourth) reduces the resolution requirements by a factor of three at 1% accuracy; at tighter tolerances a
factor of 20 is achieved and at higher orders, one achieves almost 2 orders of magnitude. These savings are
magnified as one proceeds to higher spatial dimensions.

ε 2E 4E 6E 8E 10E

10 �
2 � 0 22.20 7.666 5.381 4.486 4.006

10 �
2 � 5 39.49 10.29 6.597 5.262 4.577

10 �
3 � 0 70.24 13.76 8.055 6.144 5.205

10 �
3 � 5 124.9 18.39 9.810 7.153 5.900

10 �
4 � 0 222.1 24.55 11.93 8.308 6.671

10 �
4 � 5 395.0 32.76 14.48 9.635 7.530

10 �
5 � 0 702.5 43.70 17.57 11.16 8.488

Table 1. Number of grid points per wavelength required to obtain a
chosen relative error tolerance ε using explicit, centered-difference, mid-
point, interpolant operators of orders two through ten. See table 13 for
stencil coefficients.

However, the use of high-order discretizations and interpolants is not without its drawbacks. SAMR in-
terpolant operators are evaluated using a linear combination of as many as pd

I (where pI is the order of
accuracy and d is the dimensionality) values and their respective coefficients. While this renders high-order
interpolants at each grid point far more expensive compared to bilinear or biquadratic (trilinear and tri-
quadratic for 3D) interpolations, results in [20] indicate that the computational savings from the sparser
grids may far outweigh the heavier per-gridpoint computational requirement in high-order methods. Nev-
ertheless, high-order discretizations and interpolants do lead to certain complications. They may need to
be closed to lower order at domain boundaries to preserve time-stability when coupled with explicit time-
marching algorithms. Further, they may require smaller timesteps for stability, though this reduction is often
not too consequential.

In this study we examine empirically high-order spatial convergence on a multiple-level SAMR mesh to
identify correct discretization-interpolation-dissipation sets in conjunction with appropriate refinement/coarsening
procedures. As a first step in that direction, we develop the expression for high-order discretizations, inter-
polants and filters which will be used in Sec. 3.

2.1 Derivatives

Finite-difference differentiation operators are constructed for the purposes of providing high-order deriva-
tives as well as potentially adding dissipation via upwinding. In the case of arbitrary skewed stencils rep-
resenting the pDth-order accurate approximation to the kth-derivative on a uniform stencil of width ∆x, we
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may write the derivative at grid point i as [22]

����� � βL f
�
k �

i
�

2 � αL f
�
k �

i
�

1 � f
�
k �

i � αR f
�
k �

i � 1 � βR f
�
k �

i � 2 � ����� � (1)����� �
cL fi

�
3

� ∆x �
�
k � �

bL fi
�

2

� ∆x �
�
k � �

aL fi
�

1

� ∆x �
�
k � �

ϒ fi

� ∆x �
�
k � �

aR fi � 1

� ∆x �
�
k � �

bR fi � 2

� ∆x �
�
k � �

cR fi � 3

� ∆x �
�
k � � �����

where fi is the value of the function at point i, and f
�
k �

i is the value of the k-derivative at that point. Following

Kennedy and Carpenter [22] we use α, β, ����� , to denote coefficients of the derivative terms f
�
k �

i that are one,
two, ����� , grid points on either side of point i, with R and L subscripts denoting the right and left directions
on either side of point i respectively. We use a, b, ����� similarly for the coefficients of the function terms fj

for j � i � 1 � i � 2 �
����� , and ϒ for the coefficient of fi. The Fourier image of this discrete derivative is given

by

Ψ �

���
ϒ � � aR � aL � cos � ξ � � � bR � bL � cos � 2ξ � � � cR � cL � cos � 3ξ � � �����	� �

i
� � aR � aL � sin � ξ � � � bR � bL � sin � 2ξ � � � cR � cL � sin � 3ξ � � �����	� 
� �

1 � � αR � αL � cos � ξ � � � βR � βL � cos � 2ξ � � �����	� �
i
� � αR � αL � sin � ξ � � � βR � βL � sin � 2ξ � � ������� 
 (2)

or, after expanding the sine and cosine functions as a Taylor series,

Ψ �
∞

∑
m � 1

ψ �
2m

�
2 � ξ � 2m

�
2 � � i

∞

∑
m � 1

ψ �
2m

�
1 � ξ � 2m

�
1 � (3)

where ξ is the Fourier dual variable, and Ψ � ξ � is the approximation of the derivative in Fourier space [22, 23].

For the k-th derivative, and a pD-th order accurate derivative discretization, we must now solve � pD � k �
simultaneous equations; ψk

� � i � k (for k even), ψk
� � i � k

�
1 (for k odd), and ψl

� 0 � l � 0 � 1 �
�����

� � pD �
k � 1 � � l � k, in � pD � k � unknowns; � ����� � βL � αL � αR � βR �

�����
� cL � bL � aL � aR � bR � cR �

������� . Table 2 lists various
values obtained from solving these equations for k � 1 (∂ 	 ∂x) along with their leading-order truncation errors
(L.O.T.E.). The suffix E is used to denote explicit centered, U is for upwind, UU is for doubly upwind, D is
downwind, and the prefix denotes the order of accuracy. It is interesting to inspect these stencils further. On
uniform grids, the difference operators may be considered as linear combinations of centered first-derivative,
difference operators plus low-order approximations to higher derivatives. Singly upwinded stencils may be
readily decomposed as

� �
1 � ∆ � �

2n
�

1 ��� i

�

� �
1 � ∆c�

2n � � i
� � � 1 � n � n � 1 � !n!

� 2n � !
� �

2n � ∆c�
2 � � i

� (4)� �
1 � ∆ � �

2n � � i

�

� �
1 � ∆c�

2n � � i
� � � 1 � n � n � 1 � !n!

� 2n � !
� �

2n � 1 � ∆ � �
1 � � i

� (5)

where ∆ denotes the derivative operator, the northwest superscript is the order of the derivative, the south-
east subscript is the order of the accuracy, the northeast superscript denotes (c)-centered, ( � )-upwind, or
( � )-downwind, and the subscript outside of the parentheses denotes the grid point at which the difference
operator is acting. We illustrate this with an example.
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Name dL cL bL aL ϒ aR bR cR dR L.O.T.E.
2E 0 0 0 -1/2 0 1/2 0 0 0 -(i/6)ξ3

4E 0 0 1/12 -2/3 0 2/3 -1/12 0 0 -(i/30)ξ5

6E 0 -1/60 3/20 -3/4 0 3/4 -3/20 1/60 0 +(i/140)ξ7

8E 1/280 -4/105 12/60 -4/5 0 4/5 -12/60 4/105 -1/280 -(i/630)ξ9

3U 0 0 0 -2/6 -1/2 1 -1/6 0 0 -(i/12)ξ4

5U 0 0 1/20 -4/8 -1/3 1 -2/8 1/30 0 -(i/60)ξ6

7U 0 -1/105 1/10 -6/10 -1/4 1 -3/10 1/15 -1/140 -(i/280)ξ8

4U 0 0 0 -1/4 -5/6 3/2 -1/2 1/12 0 +(i/20)ξ5

6U 0 0 1/30 -2/5 -7/12 4/3 -1/2 2/15 -1/60 +(i/105)ξ7

4UU 0 0 0 0 -25/12 4 -3 4/3 -1/4 -(i/5)ξ5

3UU 0 0 0 0 -11/6 3 -3/2 1/3 0 +(i/4)ξ6

5UU 0 0 0 -1/5 -13/12 2 -1 1/3 -1/20 +(i/30)ξ6

3DUU 0 0 0 -3/10 -19/30 6/5 -3/10 1/30 0 -(i/20)ξ4

5DUU 0 0 3/70 -16/35 -37/84 8/7 -5/14 8/105 -1/140 -(i/105)ξ6

4DUU 0 0 5/42 -6/7 5/12 4/21 3/14 -2/21 1/84 -(2i/35)ξ5

Table 2. Stencil coefficients for centered and upwinded ∂ � ∂x operators
on uniform grids.

Consider stencil 3U in Table 2. By Eq. 4, (n � 2) its stencil coefficients can be obtained from those of a
centered stencil (4E, Table 2) and by scaling those of a second-order filter (4E, Table 12) by - 1/12. We can
verify this by simply reading the stencil coefficients from the tables and performing the scaling.

More elaborate upwinding stencils may be decomposed as� �
1 � ∆ � ��

4 � � i

�

� �
1 � ∆c�

4 � � i
�

1
12

� �
5 � ∆ � �

1 � � i
�

1
4

� �
5 � ∆ � �

1 � � i � 1
� (6)� �

1 � ∆ � ��
3 � � i

�

� �
1 � ∆c�

6 � � i
�

1
60

� �
4 � ∆c�

2 � � i
�

1
�

1
12

� �
4 � ∆c�

2 � � i
�

19
60

� �
4 � ∆c�

2 � � i � 1
� (7)� �

1 � ∆ � ��
5 � � i

�

� �
1 � ∆c�

8 � � i
�

1
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� �
6 � ∆c�

2 � � i
�

1
�

1
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� �
6 � ∆c�

2 � � i
�
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280

� �
6 � ∆c�

2 � � i � 1
� (8)� �

1 � ∆ �
� ��

3 � � i

�

� �
1 � ∆c�

6 � � i
�

1
60

� �
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� �
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4 � � i
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1 � ∆c�

6 � � i
�

1
84

� �
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2 � � i � 1
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1
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2 � � i
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�
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1
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� �
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�(11)

It may be seen that the even-order, noncentered operators include dispersive components (e.g. Eq. 6; 4UU
in Table 2). Other operators have only dissipative components but of both signs (e.g. Eq. 7; 3UU in Table 2)
which can amplify errors. It is thus prudent to only consider odd-order, singly-upwinded derivative operators
to add dissipation. Note that the reason for the alternating sign in front of the dissipative term is related to the

fact that
� �

2n � ∆c�
2 � ��� � iξ � 2n � � � 1 � nξ2n. Similarly, for dispersive terms one finds

� �
2n � 1 � ∆c�

1 � ��� � iξ � 2n � 1 �

� � 1 � niξ2n � 1.
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To close the boundaries for these first-derivative operators when insufficient grid points are available for
centered-difference operators, Table 3 lists lower-order closures. For situations where ∂2 	 ∂x2 is needed, cen-

cL bL aL ϒ aR bR cR L.O.T.E.
0 0 0 -1 1 0 0 -(1/2)ξ2

0 0 0 -11/6 3 -3/2 1/3 +(1/4)ξ4

0 0 -1/3 -1/2 1 -1/6 0 -(1/12)ξ4

0 0 -1 1 0 0 0 +(1/2)ξ2

-1/3 3/2 -3 11/6 0 0 0 -(1/4)ξ4

0 1/6 -1 1/2 1/3 0 0 +(1/12)ξ4

Table 3. Boundary stencil coefficients of lower-order, ∂ � ∂x operators.

tered interior stencil coefficients are given in Table 4 along with their leading-order truncation error. Finally,

Name dL cL bL aL ϒ aR bR cR dR L.O.T.E.
2E 0 0 0 1 -2 1 0 0 0 +(1/12)ξ4

4E 0 0 -1/12 4/3 -5/2 4/3 -1/12 0 0 +(1/90)ξ6

6E 0 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90 0 +(1/560)ξ8

8E -1/560 8/315 -1/5 8/5 -205/72 8/5 -1/5 8/315 -1/560 +(1/3150)ξ10

Table 4. Stencil coefficients for centered ∂2 � ∂x2 operators on uniform
grids.

lower-order boundary stencils to accompany the stencils listed in Table 4 are given in Table 5. Stencils for
∂xxx, ∂xxxx and ∂xxxxx on vertex-centered grids are in Table 6- 11. The lower-order boundary stencils are also
provided. ∂xxx and ∂xxxx are used in Sec. 3 to investigate the Korteweg-de Vries and Kuramoto-Sivashinsky
equations [24]; ∂xxxxx could be used to perform a similar investigation for the Kawahara equation.

dL cL bL aL ϒ aR bR cR dR L.O.T.E.
0 0 0 0 1 -2 1 0 0 -ξ3

0 0 0 0 35/12 -26/3 19/2 -14/3 11/12 +(5/6)ξ5

0 0 0 11/12 -5/3 1/2 1/3 -1/12 0 -(1/12)ξ5

0 0 1 -2 1 0 0 0 0 +ξ3

11/12 -14/3 19/2 -26/3 35/12 0 0 0 0 -(5/6)ξ5

0 -1/12 1/3 1/2 -5/3 11/12 0 0 0 +(1/12)ξ5

Table 5. Coefficients of ∂2 � ∂x2 operators near boundary points.
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Name ϒ aR
� � aL bR

� � bL cR
� � cL dR

� � dL eR
� � eL L.O.T.E.

2E 0 -1 1/2 0 0 0 +(i/4)ξ5

4E 0 -13/8 1 -1/8 0 0 +(7i/120)ξ7

6E 0 -61/30 169/120 -3/10 7/240 0 +(41i/3024)ξ9

8E 0 -1669/720 4369/2520 -541/1120 1261/15120 -41/6048 +(479i/151200)ξ11

Table 6. Stencil coefficients for centered ∂3 � ∂x3 operators on uniform
grids.

bL aL ϒ aR bR cR dR eR L.O.T.E.
0 0 -1 3 -3 1 0 0 +(3/2)ξ4

0 -1 3 -3 1 0 0 0 +(1/2)ξ4

0 0 -17/4 71/4 -118/4 98/4 -41/4 7/4 -(15/8)ξ6

0 -7/4 25/4 -34/4 22/4 -7/4 1/4 0 -(1/8)ξ6

-1/4 -1/4 10/4 -14/4 7/4 -1/4 0 0 +(1/8)ξ6

Table 7. Coefficients of ∂3 � ∂x3 operators near left boundary points.

Name ϒ aR
� aL bR

� bL cR
� cL dR

� dL eR
� eL L.O.T.E.

2E 6 -4 1 0 0 0 -(1/6)ξ6

4E 28/3 -13/2 2 -1/6 0 0 -(7/240)ξ8

6E 91/8 -122/15 169/60 -2/5 7/240 0 -(41/7560)ξ10

8E 1529/120 -1669/180 4369/1260 -541/840 1261/15120 -41/7560 -(479/453600)ξ12

Table 8. Stencil coefficients for centered ∂4 � ∂x4 operators on uniform
grids.

2.2 Filters

Finite-difference filters are a useful adjunct to a numerical method lacking spectral accuracy [22, 25]. In
a non-AMR context, they are used simply to remove high-wavenumber spatial information that is not re-
solvable by the numerical method. However, in an AMR context, they may additionally be used to ensure
that the high-order interpolants do not encounter the Runge phenomenon. Several criteria exist for a useful
filter. Low wave-number information that is resolved should be virtually untouched while the relatively
unresolved, high wave-number information should be removed. This constitutes dissipation. Dispersion,
which is often introduced by the filter boundary closures making for a non-symmetric dissipation matrix, is
to be avoided if possible.

As a filtering function in Fourier space, we seek a function that is equal to 0 at ξ � π and is equal to 1
at ξ � 0. A simple function to satisfy this is � 1 � sin2n � ξ 	 2 ��� . To create this Fourier image using explicit
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bL aL ϒ aR bR cR dR eR fR L.O.T.E.
0 0 1 -4 6 -4 1 0 0 +2iξ5

0 1 -4 6 -4 1 0 0 0 +iξ5

0 0 35/6 -186/6 411/6 -484/6 321/6 -114/6 17/6 -(7i/2)ξ7

0 17/6 -84/6 171/6 -184/6 111/6 -36/6 5/6 0 -(2i/3)ξ7

5/6 -18/6 21/6 -4/6 -9/6 6/6 -1/6 0 0 -(i/6)ξ7

Table 9. Coefficients of ∂4 � ∂x4 operators near left boundary points.

Name ϒ aR
� � aL bR

� � bL cR
� � cL dR

� � dL eR
� � eL fR

� � fL L.O.T.E.
2E 0 5/2 -2 1/2 0 0 0 -(i/3)ξ7

4E 0 29/6 -13/3 3/2 -1/6 0 0 -(13i/144)ξ9

6E 0 323/48 -13/2 87/32 -19/36 13/288 0 -(139i/6048)ξ11

8E 0 1039/126 -33853/4032 3011/756 -3125/3024 121/756 -139/12096 -(37i/6480)ξ13

Table 10. Stencil coefficients for centered ∂5 � ∂x5 operators on uniform
grids.

cL bL aL ϒ aR bR cR dR eR fR gR L.O.T.E.
0 0 0 -1 5 -10 10 -5 1 0 0 -(5/2)ξ6

0 0 -1 5 -10 10 -5 1 0 0 0 -(3/2)ξ6

0 -1 5 -10 10 -5 1 0 0 0 0 -(1/2)ξ6

0 0 0 -46/6 295/6 -810/6 1235/6 -1130/6 621/6 -190/6 25/6 +(35/6)ξ8

0 0 -25/6 154/6 -405/6 590/6 -515/6 270/6 -79/6 10/6 0 +(5/3)ξ8

0 -10/6 55/6 -126/6 155/6 -110/6 45/6 -10/6 1/6 0 0 +(11/144)ξ8

-1/6 -2/6 27/6 -70/6 85/6 -54/6 17/6 -2/6 0 0 0 -(1/6)ξ8

Table 11. Coefficients of ∂5 � ∂x5 operators near left boundary points.
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finite-difference stencils, one may utilize scaled values of the symmetric � 2n � th-order derivative of a function
f ,

f
�
2n �

i
� ϒ fi

� ∆x �
�
2n � � a

fi � 1 � fi
�

1

� ∆x �
�
2n � � b

fi � 2 � fi
�

2

� ∆x �
�
2n � � c

fi � 3 � fi
�

3

� ∆x �
�
2n � � ����� (12)

where a � aL
� aR, b � bL

� bR, etc � � � , with Ψ � ϒ � 2acos � ξ � � 2bcos � 2ξ � � 2ccos � 3ξ � � ����� . Solving for
the stencil coefficients for the second-order accurate version of this operator, ∂2n f 	 ∂x2n, i.e. Ψ � � � 1 � nξ2n �

O � ξ2n � 2 � , the Fourier image is given by Ψ � � � 1 � n � 2sin
�

ξ
2 ��� 2n

. Actual stencil coefficients for the ∂2n 	 ∂x2n

operator, up to eighth-order, are given in Table 12. Alternatively, one could develop these second-order
accurate stencils for arbitrary n using Pascal’s triangle.

Name dL cL bL aL ϒ aR bR cR dR L.O.T.E.
2E 0 0 0 1 -2 1 0 0 0 +(1/12)ξ4

4E 0 0 1 -4 6 -4 1 0 0 -(1/6)ξ6

6E 0 1 -6 15 -20 15 -6 1 0 +(1/4)ξ8

8E 1 -8 28 -56 70 -56 28 -8 1 -(1/3)ξ10

Table 12. Stencil coefficients for centered ∂2n � ∂x2n operators on uni-
form grids.

These symmetric stencil coefficients are the interior elements of the dissipation matrix. Stencils of order
2n give rise to a filter of order, pF

� 2n. For the interior, the absolute value of the stencil coefficients is
simply equal to 2n! 	 � � 2n � i � !i! � where i runs from 0 to 2n. For i � n, �ϒ � is retrieved. At i � n � 1 one
gets � aL

� aR
� a � , at i � n � 2 one gets � bL

� bR
� b � , etc. By a slight rescaling of the dissipation matrix,

the filtered value of U may be seen to beÛ � � 1 � αDD � U , where Û is the filtered vector and αD must be
given by � � 1 � n � 12 �

2n. At the boundaries where ∂2n 	 ∂x2n cannot be approximated using symmetric stencils,
one may either implement skewed stencils and risk dispersive filter errors, or implement ∂n 	 ∂xn rather than
∂2n 	 ∂x2n in the filter matrix D. We have chosen to adopt the second approach, even though it introduces
errors of O � ∆xn � 2 � at the boundaries while the filter error at interior points is O � ∆x2n � 2 � . Filter coefficients
and other details may be found in the literature [22, 25] but are given using the negative of the stencils
described in Sec. 2.1 so that Û � � 1 � αDD � U .

Simulations involving filtering of the solution require a degree of care while filtering. For example, in a
multistage time-integration method, filtering the stage value destroys the temporal accuracy of the scheme
- filtering can only be done after the step is completed. Further, filtering changes the solution by removing
the high wavenumber spectrum of the solution; thus high order filters are to be preferred since their cutoff
wave-number is high. High-order filters have wide stencils, which pose a practical difficulty in adaptive
mesh schemes since this requires the patches to be at least as wide as the filter stencil. In our studies, we
impose a “halo” of grid points n wide around each patch. This ensures that all the “valid” grid points on the
patch (i.e. the grid points whose refinement is dictated by the requirements of the physics being simulated)
are considered “interior” points by the filter matrix. This is not satisfied at the domain boundaries and fine
patches abutting the domain boundary incur filter errors of O � ∆xn � 2 � at certain points.
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2.3 Hyperviscosity

While not used here, we present the following brief comments on hyperviscosity. Beyond using upwinding
to apply high-order dissipation during construction of the right-hand-side (RHS) of the governing equations
or applying stand-alone filters to remove high wavenumbers from the U -vector itself, one can add a hyper-
viscosity term to the RHS to both dealias the numerical method and to forestall Runge phenomena. The
term would appear as µH � ∇2 � nU and may be readily constructed using the symmetric dissipation matrices,
D2n, used in the filters. To avoid interfering with the order of the overall method, p, it necessary to use
2n � pH � p. One may then write ∇2nU � � D

�
2 �

x � D
�
2 �

y � D
�
2 �

z � nU . It is not clear that, for the purposes
in mind, this much effort needs to be expended. One could effectively assume that dissipation matrices
commute and reduce workload. This would transform

∇4U �

�
D
�
4 �

x � D
�
4 �

y � D
�
4 �

z � D
�
2 �

x D
�
2 �

y � D
�
2 �

x D
�
2 �

z � D
�
2 �

y D
�
2 �

x � D
�
2 �

y D
�
2 �

z � D
�
2 �

z D
�
2 �

x � D
�
2 �

z D
�
2 �

y � U

to

∇4U �
�
D
�
4 �

x � D
�
4 �

y � D
�
4 �

z � 2D
�
2 �

x D
�
2 �

y � 2D
�
2 �

y D
�
2 �

z � 2D
�
2 �

z D
�
2 �

x � U �

To further reduce work, one could ignore cross-terms and simply approximate ∇2nU � � D
�
2n �

x � D
�
2n �

y �
D
�
2n �

z � U . The remaining difficulty is to select an appropriate value for µH .

The use of hyperviscous terms in explicit time-marched schemes can be problematic. Since the temporal
stability of the explicit schemes varies as ∆x2n, high order hyperviscosity can lead to very small timesteps on
fine patches. This problem is removed if one uses implicit schemes on such meshes. Thus, while hypervis-
cosity appears to be an elegant means of controlling high wavenumber oscillations, practical considerations
make filters more attractive.

2.4 Interpolants

Interpolations, in a vertex-centered AMR environment, are used to fill up the coarse-fine interface or “halo”
that is kept around all patches. This “halo” enables the the use of symmetric stencils for discretizations
and filters uniformly on all patches, except near the domain boundaries. As the order of the filters and
discretizations are increased, the width of the “halo” is increased accordingly. The solution in this halo
region is not calculated using the equations being solved; rather they are interpolated from the underlying
coarse mesh. Since the halo is additive i.e. it is added around the “valid” points whose refinement is dictated
by resolution requirement, these interpolations are obtained from coarse grid points where the solution is
deemed sufficiently resolved.

Interpolation requirements for structured AMR using a vertex-centered grid arrangement include as many as
seven distinct finite-difference subinterpolations for up to three Cartesian coordinate directions. All neces-
sary coarse-to-fine interpolations may be accomplished by using one-dimensional interpolants in the x-, y-,
and z-directions, two-dimensional interpolants in the xy-, yz-, and zx-directions, and three-dimensional in-
terpolants in the xyz-direction. Two dimensional simulations require three, say, x-, y-, and xy-interpolations.
Three dimensional simulations require all seven to interpolate the 33 � 23 � 19 points inside a unit cube.
Twelve interpolations require 1D interpolants (the triangles in Fig. 1), six require 2D interpolants (the
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squares in Fig. 1), and one requires a 3D interpolant (the small circle). Since all 23 � 8 coarse grid points are
also fine grids points, interpolation from fine-to-coarse is merely an injection and requires no special finite
difference stencils. Coarse-to-fine interpolations, however, do need specific stencils. Each of these stencils,
whether it be for one-, two-, or three-dimensions, interpolates from the coarse grid data to to its geometric
midpoint where the fine grid point lies. Although implicitness in finite-difference derivative and interpolant
operators provides better high-wavenumber resolution, their added cost makes them ultimately less efficient
than explicit methods unless their implicit solves can be made quite economical. Hence, all interpolants
considered here will be explicit.

2.4.1 1D - Interior

The stencils in the interior of the domain can symmetrically utilize equal numbers of grid points on either
side of the point being interpolated. Hence, the stencil coefficients are identical on each side,

f
�
0 �

i
� ����� � c fi

�
5 � 2 � b fi

�
3 � 2 � a fi

�
1 � 2 � a fi � 1 � 2 � b fi � 3 � 2 � c fi � 5 � 2 � �����

and give its Fourier image by

Ψ ��� 2a cos � ξ 	 2 � � 2b cos � 3ξ 	 2 � � 2c cos � 5ξ 	 2 � � ������� �
∞

∑
l � 0

ψlξl
� (13)

To achieve order pI , we require ψ0
� 1 and ψl

� 0, with l � 1 � 2 �
�����

� � pI � 1 � . Symmetric interior stencils
are listed in Table 13 along with their leading-order truncation error. It will be useful to also cast these

Stencil 2nd-order 4th-order 6th-order 8th-order 10th-order
a 1/2 9/16 150/256 1225/2048 39690/65536
b 0 -1/16 -25/256 -245/2048 -8820/65536
c 0 0 3/256 49/2048 2268/65536
d 0 0 0 -5/2048 -405/65536
e 0 0 0 0 35/65536

ψpI ξpI -(1/8)ξ2 -(3/128)ξ4 -(5/1024)ξ6 -(35/32768)ξ8 -(63/262144)ξ10

Table 13. Coefficients of one-dimensional, vertex-centered, midpoint
interpolants in terms of ξ.

stencils in Fourier space as

Ψ2
�
x �

I
� cos � ξ 	 2 � � (14)

Ψ4
�
x �

I
� � 1

4
cos � ξ 	 2 �

�
� 5 � cos � ξ � � � (15)

Ψ6
�
x �

I
� � 1

64
cos � ξ 	 2 �

�
89 � 28cos � ξ � � 3cos � 2ξ � � � (16)
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Ψ8
�
x �

I
� � 1

512
cos � ξ 	 2 �

�
� 762 � 299cos � ξ � � 54cos � 2ξ � � 5cos � 3ξ � � � (17)

Ψ10
�
x �

I
� � 1

16384
cos � ξ 	 2 �

�
� 25609 � 11528cos � ξ � � 2708cos � 2ξ � � 440cos � 3ξ � � 35cos � 4ξ � � �(18)

for the x-direction. In the y- or z-directions, these expressions are modified by simply replacing ξ with η � y �
or ζ � z � . Using Mathematica [26], one may readily convert between trigonometric and exponential functions
using TrigToExp[] to retrieve the stencil coefficients.

2.4.2 1D - Boundaries

As boundaries are approached, interpolant stencils must become asymmetrical if higher-order is desired.
Stencils are now considered as

f
�
0 �

i
� ����� � C fi

�
5 � 2 � B fi

�
3 � 2 � A fi

�
1 � 2 � a fi � 1 � 2 � b fi � 3 � 2 � c fi � 5 � 2 � �����

with a Fourier image given by

Ψ �

��� � a � A � cos � 1 	 2ξ � � � b � B � cos � 3 	 2ξ � � � c � C � cos � 5 	 2ξ � � ����� � �
i
� � a � A � sin � 1 	 2ξ � � � b � B � sin � 3 	 2ξ � � � c � C � sin � 5 	 2ξ � � �����	� 
 �

∞

∑
l � 0

ψlξl
� (19)

Again, to achieve order pI , we require ψ0
� 1 and ψl

� 0 � l � 1 � 2 �
�����

� � pI � 1 � . As the stencils are skewed,

we use Ψ4
�
x �� to denote the fourth-order interpolant in the x-direction that is shifted one grid point to the

right, i.e. the nonzero stencil coefficients are � A � a � b � c � . Shifting two grid points to the right at sixth-order

produces Ψ6
�
x �� with a stencil determined by � A � a � b � c � d � e � . To fully close the interpolant boundaries at

orders four, six, eight, and ten, the stencils as computed from the Mathematica script provided in Appendix A
are required. In the y- or z-directions, these expressions are modified by simply replacing ξ with either η
or ζ. For stencils shifted to the left rather than the right, the Fourier image expressions should have each
occurrence of I replaced with � I and the lowercase letter used to denote the degree of skewness should be
replaced with the uppercase version of that letter.

2.4.3 2D - Interior

Before discussing multidimensional stencils, it will be useful to develop a reasonably clear and compact
notation in which to convey both stencils and their coefficients. Let � Γα �α � � p

�
I � � p

�
I � 1 � � � � � p

�
I � 1 � p

�
I
� �� ����� � C � B � A � a � b � c �

����� � be the stencil coefficients associated with grid points � ����� � i � � 5 	 2 � � i � � 3 	 2 � � i �
� 1 	 2 � � i � � 1 	 2 � � i � � 3 	 2 � � i � � 5 	 2 � �

��� ��� . Using this, the stencil coefficient associated with the point � i �
� 1 	 2 � � j � � 1 	 2 � � would be Aa. With this, the preceding symmetric, one-dimensional stencil may be written
as

f
�
0 �

i
�

p �I

∑
α �

�
p �I

Γα fi � α
� ����� � C fi

�
5 � 2 � B fi

�
3 � 2 � A fi

�
1 � 2 � a fi � 1 � 2 � b fi � 3 � 2 � c fi � 5 � 2 � ����� (20)
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where p
�

I
� � pI � 1 � 	 2. For a two-dimensional stencil and its Fourier image,

f
�
0 �

i � j
�

p �I

∑
α �

�
p �I

p �I

∑
β �

�
p �I

ΓαΓβ fi � α � j � β � Ψ �

p �I

∑
α �

�
p �I

p �I

∑
β �

�
p �I

ΓαΓβ exp � iαξ � exp � iβη � �
∞

∑
l � 0

∞

∑
m � 0

ψl � mξlηm
� (21)

where we require ψ0 � 0
� 1 and ψl � m

� 0, with l � m � 1 � 2 �
�����

� � pI � 1 � to achieve order pI . Symmetry
reduces the number of independent stencil coefficients from p2

I to pI � pI � 2 � 	 8. For instance, certain off
diagonal stencil coefficients satisfy the relations ce = cE = Ce = CE = ec = Ec = eC = EC, while diagonal
coefficients satisfy cc = cC = Cc = CC. These interior stencils may be cast in Fourier space quite simply as

Ψ2
�
xy �

I
� Ψ2

�
x �

I Ψ2
�
y �

I , Ψ4
�
xy �

I
� Ψ4

�
x �

I Ψ4
�
y �

I , Ψ6
�
xy �

I
� Ψ6

�
x �

I Ψ6
�
y �

I , Ψ8
�
xy �

I
� Ψ8

�
x �

I Ψ8
�
y �

I , Ψ10
�
xy �

I
� Ψ10

�
x �

I Ψ10
�
y �

I ,
where the one-dimensional stencils are given in Eq. 14- 18. Values for the unique stencil coefficient are
listed in Table 14 for even orders from two to ten.

Stencil 2nd-order 4th-order 6th-order 8th-order 10th-order
aa 1/4 81/256 22500/65536 1500625/222 1575296100/232

ba 0 -9/256 -3750/65536 -300125/222 -350065800/232

bb 0 +1/256 625/65536 60025/222 77792400/232

ca 0 0 450/65536 60025/222 90016920/232

cb 0 0 -75/65536 -12005/222 -20003760/232

cc 0 0 9/65536 2401/222 5143824/232

da 0 0 0 -6125/222 -16074450/232

db 0 0 0 1225/222 3572100/232

dc 0 0 0 -245/222 -918540/232

dd 0 0 0 25/222 164025/232

ea 0 0 0 0 1389150/232

eb 0 0 0 0 -308700/232

ec 0 0 0 0 79380/232

ed 0 0 0 0 -14175/232

ee 0 0 0 0 1225/232

ψpI � pI ξpI ηpI -(1/8)ξ2 -(3/128)ξ4 -(5/1024)ξ6 -(35/32768)ξ8 -(63/262144)ξ10

-(1/8)η2 -(3/128)η4 -(5/1024)η6 -(35/32768)η8 -(63/262144)η10

Table 14. Coefficients and truncation errors of two-dimensional, vertex-
centered interpolants in terms of ξ and η.

2.4.4 2D - Boundaries

Boundary stencils to two-dimensional interpolants may be constructed in Fourier space by simply multiply-
ing together the proper one-dimensional interpolants. At orders pI

� � 2 � 4 � 6 � 8 � 10 � , one needs to close the
interior method with � 0 � 2 � 5 � 9 � 14 � � pI � pI � 2 � 	 8 � 1 unique boundary stencils if one wishes to preserve
overall order. At fourth-order, when x and y are chosen as the two directions, these are given by

Ψ4
�
xy �

I �
� � Ψ4

�
x �

I Ψ4
�
y �� � Ψ4

�
xy ��

�
� � Ψ4

�
x �� Ψ4

�
y �� � (22)
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Note that the other stencils, Ψ4
�
xy ��

�

� , Ψ4
�
xy �

�
�

� , and Ψ4
�
xy �

�
�

� are simply rotations of Ψ4
�
xy �

a �
� while Ψ4

�
xy �

�
� I , Ψ4

�
xy ��

� I ,

and Ψ4
�
xy �

I �

� are rotations of Ψ4
�
xy �

I �
� . At sixth-order the unique stencils consist of Ψ6

�
xy �

I �
� , Ψ6

�
xy �

I �

� , Ψ6
�
xy ��

�
� , Ψ6

�
xy �

�
�

� ,

and Ψ6
�
xy ��

�

� , For eighth-order, one has Ψ8
�
xy �

I �
� , Ψ8

�
xy �

I �

� , Ψ8
�
xy �

I � � , Ψ8
�
xy ��

�
� , Ψ8

�
xy �

�
�

� , Ψ8
�
xy ��

� � , Ψ8
�
xy ��

�

� , Ψ8
�
xy ��

� � , Ψ8
�
xy �

� � � , and

at tenth-order, there are Ψ10
�
xy �

I �
� , Ψ10

�
xy �

I �

� , Ψ10
�
xy �

I � � , Ψ10
�
xy �

I � � , Ψ10
�
xy ��

�
� , Ψ10

�
xy �

�
�

� , Ψ10
�
xy ��

� � , Ψ10
�
xy �

�
� � , Ψ10

�
xy ��

�

� , Ψ10
�
xy ��

� � ,

Ψ10
�
xy ��

� � , Ψ10
�
xy �

� � � , Ψ10
�
xy �

� � � , Ψ10
�
xy �

� � � .

2.4.5 3D - Interior

Similar to the derivation of two-dimensional stencils, for three-dimensions we use

f
�
0 �

i � j � k
�

p �I

∑
α �

�
p �I

p �I

∑
β �

�
p �I

p �I

∑
γ �

�
p �I

ΓαΓβΓγ fi � α � j � β � k � γ � (23)

along with its Fourier image

Ψ �

p �I

∑
α �

�
p �I

p �I

∑
β �

�
p �I

p �I

∑
γ �

�
p �I

ΓαΓβΓγ exp � iαξ � exp � iβη � exp � iγζ � �
∞

∑
l � 0

∞

∑
m � 0

∞

∑
n � 0

ψl � m � nξlηmζn
� (24)

where we require ψ0 � 0 � 0
� 1 and ψl � m � n

� 0 � l � m � n � 1 � 2 �
�����

� � pI � 1 � to achieve order pI . Stencil coefficients
may be computed by either solving for the many conditions placed on ψl � m � n or by constructing the stencils

in Fourier space and then converting the trigonometric functions to exponential functions using Ψ2
�
xy �

I
�

Ψ2
�
x �

I Ψ2
�
y �

I Ψ2
�
z �

I , Ψ4
�
xy �

I
� Ψ4

�
x �

I Ψ4
�
y �

I Ψ4
�
z �

I , Ψ6
�
xy �

I
� Ψ6

�
x �

I Ψ6
�
y �

I Ψ6
�
z �

I , Ψ8
�
xy �

I
� Ψ8

�
x �

I Ψ8
�
y �

I Ψ8
�
z �

I , Ψ10
�
xy �

I
�

Ψ10
�
x �

I Ψ10
�
y �

I Ψ10
�
z �

I . The pI � pI � 2 � � pI � 4 � 	 48 unique stencil coefficient values are listed in Table B.1 in the
appendix for orders pI

� � 2 � 4 � 6 � 8 � 10 � .

2.4.6 3D - Boundaries

Boundary stencils to three-dimensional interpolants may be constructed by a slight extension of the two-
dimensional results, by simply multiplying together the proper three one-dimensional interpolants rather
than two. At orders � 2 � 4 � 6 � 8 � 10 � one needs to close the interior method with � 0 � 3 � 9 � 19 � 34 � � pI � pI �
2 � � pI � 4 � 	 48 � 1 unique boundary stencils if one wishes to preserve overall order, where each stencil has
p3

I stencil coefficients that may or may not be unique. At fourth-order the unique stencils are given by

Ψ4
�
xyz �

I � I �
� � Ψ4

�
x �

I Ψ4
�
y �

I Ψ4
�
z �� � Ψ4

�
xyz �

I �
�

�
� � Ψ4

�
x �

I Ψ4
�
y �� Ψ4

�
z �� Ψ4

�
xyz ��

�
�

�
� � Ψ4

�
x �� Ψ4

�
x �� Ψ4

�
z �� � (25)

Other combinations using the subscripts I and a are merely rotations of the stencils just listed but with
identical stencil coefficients. At sixth-order the unique stencils consist of Ψ6

�
xyz �

I � I �
� , Ψ6

�
xyz �

I � I �
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�
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�
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�
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�
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�
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�

�
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� , For eighth-order, one has Ψ8
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� � � � , and Ψ8
�
xyz �

� � � � � . This may easily be carried on to tenth-order by including the subscript
�
.
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3 Test Problems

In this section we will address two issues

1. Given a PDE to solve on a block-structured adaptive mesh, with a discretization of order pD, what is
the order of the interpolations (pI) that needs to be used for prolongations and restrictions.

2. Once a correct (pD, pI) pair have been identified, can the tools developed in the previous section be
combined to achieve high order on adaptively refined meshes ?

For the purposes of this paper, we will specify a refinement pattern and not adapt the mesh. The issues
regarding the criteria for refining-derefining a mesh point will not be addressed here.

3.1 Appropriate interpolation orders

As described in Sec. 1 and 2, the solution on any patch in a Grid Hierarchy is the result of interpolations
from finer meshes (restrictions) and/or interpolations from the solution on coarser meshes at a coarse-fine
boundary (prolongations). In this paper, since we address vertex-centered meshes, restrictions are mere
injections and do not involve interpolations; however prolongations do involve interpolations at coarse-fine
boundaries.

The position of the coarse-fine boundary is determined by the refining-derefining criteria. These are usually
based on an threshold on solution error [1, 2] or a threshold on the gradient [12]. Thus, there exists a small
but non-zero gradient at a coarse-fine boundary and an interpolation error is incurred there. Ideally the
gradient should be small enough that the interpolation error is negligible vis-a-vis the discretization error
regardless of the interpolation chosen, but this is difficult to achieve in practice and still have an efficient grid
(we run the risk of refining large areas of the domain and losing the advantage of concentrating resolution
only where needed). Since these interpolated values cannot be differentiated indefinitely and still preserve
order, it becomes critical to choose an appropriate interpolation order.

In [20], we conducted a study of the appropriate interpolation order pI given a discretization of order pD
� 4.

The tests were done with the FitzHugh-Nagumo equation in 1D (where the highest spatial derivative is ∂xx)
and we concluded that pI � � pD � 2 � was sufficient. In Appendix C, we present a derivation of the requisite
interpolation order pI for a given order of discretization and arbitrary derivative order. In this analysis, we
find that pI � � pD � HD � should be sufficient, where HD is the highest spatial derivative in the equation. We
illustrate this empirically by using the Korteweg-de Vries equation (highest spatial derivative is ∂xxx) and the
Kuramoto-Sivashinsky equation (∂xxxx).

3.1.1 Korteweg - de Vries equation

The KdV equation is written as

Ut � 6UUx � Uxxx
� 0 (26)
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Figure 2. A soliton solution of Eq. 26 at t � 0 and 1. Symbols are used
to plot the solution on L0 and lines on L1. The red line shows the solution
at t � 1 � 0. Inset: A detail of the L1 solution.We see that the movement of
soliton during the simulation is small vis-a-vis its size.

Under the assumption that Ux
� 0 as x � � ∞, we get a traveling wave solution U � 2k2 � cosh � k � x � x0 �

4k2t � � � �
2 where k is a wavenumber and the amplitude and velocity of the traveling wave are 2k2 and 4k2

respectively.

We solve Eq. 26 on a two-level Grid Hierarchy (i.e with a Level0 and Level1, abbreviated as a � L0 � L1
�

mesh), with a factor of refinement of 2. The domain is 0 � x � 100 with x0
� 50, i.e. the initial condition

is a soliton placed at the center of the domain. The region 30 � x � 56 is refined to a L1 mesh. We use
pD

� 4. The width of the halo around the fine patches was kept at 6. Runge phenomenon was not observed
and we did not use filters. Fig. 2 shows the initial condition on L0 in symbols and the L1 solution as a solid
line. The solution is marched explicitly in a “time-refined” manner, using a classic fourth order explicit
Runge-Kutta integrator up to time t � 1 � 0 using a timestep (on the coarse mesh) of ∆t0

� 1 � 0 � 10 �
3. Such

a small timestep was used to keep the temporal content in the discrepancy between the numerical and exact
solutions small compared to the spatial content. Fig. 2 (inset) shows the movement of the profile. We see
that there is a non-zero gradient at the coarse-fine boundary. Such a situation might arise in practice if one
is not extremely rigorous about the refinement-derefinement criteria. The solution at t � 1 � 0 is also shown.

In Fig. 3 we show the RMS error in the RHS i.e. � � 6UUx � Uxxx � with respect to the analytical solution on
L1. The x-axis is the resolution of the L0 mesh. The choice of the RHS for convergence analysis is made
in order to bring out clearly the effect of interpolation errors, which are best seen in the higher derivatives.
We plot solutions obtained with pI

� 4 � 6 and 8. A uniform mesh solution, i.e. without using interpolations,
is also plotted as a guide for an ideal fourth-order convergence slope. We see that with p I

� 4 and 6 the
slope is shallower than fourth order, while pI

� 8 achieves a greater slope. Thus, using pI
� 8 should enable

pD-order convergence.
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Figure 3. Convergence of the “right-hand-side” of the KdV equation
on L1 with pD � 4 and pI � 4 � 6 and 8. The time is t � 1 � 0. A uniform
mesh run is plotted as a guide for the convergence slope. pI � 8 shows a
convergence steeper than fourth order while the others do not. Note that
the resolution here is L0 resolution; L1 is a factor of 2 finer. The effective
resolution of a L0 � 50 run is a uniform mesh of 100 and is compared
with a uniform mesh run corresponding to the effective resolution. E1 is
the RMS error (with respect to the exact solution) on Level1; E0 is the
error for the uniform mesh run.

Note that a � L0 � L1
� mesh has an effective resolution that is twice the L0 resolution and should be compared

with a uniform mesh solution that is equally resolved. This is done in Fig. 3 where the uniform mesh error
plotted against an L0 resolution of 50 was obtained on a mesh of 100 grid points. Further, the uniform
mesh run is uniformly more accurate since the entire domain is well resolved; in the adaptive mesh case, we
purposely limit the refinement to 30 � x � 56 to see the effect of the interpolants.

3.1.2 Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky (KS) equation can be written as

Ut � UUx � Uxx � Uxxxx
� 0 (27)

Under the assumption that Ux
� 0 as x � � ∞, we get a traveling wave solution

U � 15
19

k � 11H3 � 9H2 � 2 � � k �

�
11
19

(28)

H � tanh � k
2
� x � x0 �

30
19

kt ���
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Figure 4. A traveling wave solution of Eq. 27 at t � 0 and 0 � 5. Symbols
are used to plot the solution on L0 and lines on L1. The red line shows
the solution at t � 0 � 5.

As in [20], we solve Eq. 27 on a two-level Grid Hierarchy with a factor of refinement of 2. The domain
is 0 � x � 50 with x0

� 29. The region 20 � x � 29 is refined to a L1 mesh. pD
� 4 is used. The width

was the halo was kept at six. Runge phenomenon was not observed and we did not use filters. Fig. 4
shows the initial condition on L0 in symbols and the L1 solution as a solid line. The solution is marched
explicitly using a fourth order Runge-Kutta integrator to time t � 0 � 5 using a timestep (on the coarse mesh)
of ∆t0 � 5 � 0 � 10 �

4. This solution is also shown.

In Fig. 5 we show the error in the RHS, i.e. � � UUx � Uxx � Uxxxx � with respect to the analytical solution
on L1. The x-axis is the resolution of the L0 mesh. We plot solutions obtained with pI

� 6 and 8. An ideal
fourth-order convergence plot is provided as a guide. We see that with pI

� 6 the slope is shallower than
fourth order, while pI

� 8 achieves a greater slope. Thus, using pI
� 8 should enable pD-order convergence.

However, the choice of interpolant order is also dependent on the position of the coarse-fine boundary. We
repeated these runs with a refinement region of 20 � x � 38. In this case, the gradient at the coarse-fine
boundaries is small and both pI

� 6 and 8 provided fourth order convergence.

Combining the results obtained above with those in [20], we observe that pI � � pD � HD � is sufficient to en-
sure � pD � th order spatial accuracy in block-structured adaptive meshes, even when there exists a substantial
gradient at a coarse-fine boundary. This expression is seen to hold true at least for ∂xx � ∂xxx and ∂xxxx using
fourth-order discretizations. We will use it to achieve high-order convergence in 2D below.

A similar study, performed using the Kawahara equation, could verify the relationship between p I � pD and
HD for HD

� 5.
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Figure 5. Convergence of the “right-hand-side” of the KS equation
on L1 with pD � 4 and pI � 6 and 8. The time is t � 0 � 5. A ideal
fourth-order convergence plot is provided for guidance. pI � 8 shows a
convergence steeper than fourth order while the others do not. Note that
the resolution here is L0 resolution; L1 is a factor of 2 finer.E1 is the RMS
error on Level1.

3.2 Achieving high-order convergence

In this section we combine the tools developed in Sec. 2 to empirically achieve high order convergence on
block-structured adaptive meshes in two-dimensions. Tests will be carried out in 2D using the FitzHugh-
Nagumo equation. We choose a Level0 resolution that leads to the Runge phenomenon, because of the
coarse effective resolution, thus necessitating the use of filters.

The FitzHugh-Nagumo (FN) equation in 2D is

Ut
� D∇2U � AU � 1 � U � � U � α � (29)

We look for traveling wave solutions to Eq. 29, similar to the 1D case [27]. We assume that a solution of the
form U � U � ξ � st � exists where ξ � x � βy � c. We can derive the expression for ∇2U and Ut in terms of
U � and U � � . Under the assumption that

U � � aU � 1 � U � (30)

where U � 0 as ξ �
� ∞ and U � 1 as ξ � ∞ we get

a � � A
2 � 1 � β2 � D �

1 � 2
� s � � AD � 1 � β2 �

2
� 1 � 2

� 1 � 2α �
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and

U � 1
2
� 1 � tanh � aξ

2
��� � 1

2
� 1 � tanh � ξ

2δ f
��� (31)

The last expression was obtained by solving the differential equation Eq. 30 and completes the solution of
Eq. 29. δ f , a measure of the front thickness, is defined as δf

� 1 	 a.

We solve Eq. 29 on a unit square. We specify D � 1 � c � 0 � 5 and β � 1. A is set such that δ f
� 0 � 02. Eq. 31

evaluated at t � 0 provides the initial condition, and is also used to specify Dirichlet boundary conditions
on the unit square. The analytical solution, Eq. 31, is also used to evaluate the numerical error (difference
between the exact and the numerical solutions) for convergence tests, etc. The region 0 � x � 0 � 7 � 0 � y � 0 � 7
was refined (see Fig. 6). The meshes on successive levels were refined by a factor of two.

3.2.1 Fourth-order approach

Eq. 29, when solved with fourth-order discretizations (pD
� 4) and sixth-order interpolants (pI

� 6), led to
Runge phenomenon (see Fig. 6). This was not observed in a 1D context in [20], which also supplied the
particular choice of � pD � pI � . Thus filtering was required.

x

y

0 0.5 1
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0.2

0.3

0.4
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0.6

0.7
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0.9

1

Figure 6. Runge phenomenon on a 2-level block-structured mesh. The
patch outlined in black is the Level1 patch. Level0 is a 100 � 100 mesh
on a unit square. The solution is at t � 5 � 10 � 5 and was computed
with pD � 4 and pI � 6. The correct solution should not contain the
structure/oscillations one observes at southeast and northwest corners of
the Level1 patch.

In order to choose a filter of the correct order (pF ), we conducted a series of tests (see Fig. 7). A � pF � th order
filter is a � pF � th spatial derivative in the interior points of the mesh implemented with a centered stencil that
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Figure 7. Numerical errors (calculated using the exact solution) for the
FitzHugh-Nagumo equations solved using fourth-order discretizations.
Numerical solutions computed with pF � 6 � 8 and 10 on grid hierarchies
with up to 3 levels of refinement are plotted with

�
, � and � respec-

tively. � pD � th and � pF � th-order convergence are plotted with solid and
dashed lines respectively. pF � 6 � 8 and 10 are represented by red, blue
and black respectively. For pF � 8, we see fourth-order convergence
as filter errors are smaller than discretization errors. The y-axis has the
Level0 RMS error (E0) and the “ideal” errors if the discretization or the
filter errors dominate.

is of second order accuracy. The Level0 mesh is kept at 100 � 100. The solution was advanced to time
t � 4 � 10 �

4 using a Level0 ∆t � 10 �
6. The width of the halo is kept at 6. The temporal component in the

RMS difference between the numerical and the exact solution is expected to be negligible with respect to the
spatial component. In Fig. 7, we plot the Level0 RMS error using symbols, though tests were done with zero,
one, two and three levels of refinement (zero levels of refinement is a uniform mesh run). Lines are used
to plot the ideal convergence (for the purpose of comparison) at both � pD � th and � pF � th order. For pF

� 6,
it is clear that the numerical errors converge at 6th order; thus the errors introduced by filtering overwhelm
the discretization errors. For pF

� 8 � 10, the convergence of the numerical error is clearly � pD � th as long as
we refine the grid. Also, the difference between the pF

� 8 and pF
� 10 runs are small (and gets smaller

as levels of refinement are introduced) indicating that the filter errors are insignificant. The clear exceptions
are the uniform mesh runs, where the numerical errors do not seem to fall on either on the � pD � th or � pF � th

order convergence plots, but are somewhere in between. Thus, at a 100 � 100 resolution, the discretization
and filter errors are comparable. However, the magnitude of the filter errors (on the uniform mesh runs)
decrease with the order of the filters.

Based on Fig. 7 we choose pF
� 8 and conduct convergence tests on 50 � 50, 100 � 100 and 200 � 200

Level0 meshes (see Fig. 8). Numerical errors calculated one each level are plotted, as levels of refinement
are allowed. We see that the RMS errors on each of the levels are very similar, as might be expected since
the solution is restricted from the finer to the coarser meshes. Further, as more levels of refinement are
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Figure 8. Numerical (RMS) errors observed when (pD � 4 � pF � 8).
Solutions were done on 50 � 50 (black), 100 � 100 (red) and 200 � 200
(blue) meshes with different levels of refinement. Errors on Level 0, 1,
2 and 3 are plotted with

�
, � , � and � respectively. Ideal fourth-order

convergence is plotted using solid lines. Apart from the 50 � 50 uniform
mesh run, the errors follow the ideal convergence closely. Ei � i � 0 � � � � 3
refer to the RMS error on level i.

allowed, fourth-order convergence is observed. The only outlier is the 50 � 50 uniform mesh run; the grid
is too coarse to resolve the traveling front and the errors are excessive.

3.2.2 Sixth-order approach

In this section, we address the question of using pD
� 6 instead of pD

� 4 as was done in Sec. 3.2.1. In Fig. 7,
it was seen that � pD � th-order convergence was observed only with levels of refinement, when discretization
errors dominated the temporal and filter errors (since it is the RMS difference between exact and numerical
solutions that we plot). Since sixth-order stencils are expected to be more accurate than fourth-order ones,
we study the interaction between filter and discretization errors in a simplified setting, with no interpolations
and no variation in spatial resolution, viz. on a uniform mesh.

In Fig. 9, we plot the RMS difference between exact solutions and numerical solutions computed with pD
� 6

along with filters of order pF
� 8 � 10 and 12. An unfiltered experiment is also plotted for comparison. Runs

are done on N � N grid where N � 100 � 200 and 400 with ∆t � 10 �
7. The problem was integrated up to time

t � 4 � 10 �
4 as in Sec. 3.2.1. We see that without filtering, the errors converge ideally (6th) order as N is

increased. Filtering introduces a significant error and the behavior of the error for filtered runs lies between
pD and pF . It is only at N � 400 that the pF

� 12 run approaches the unfiltered runs in accuracy. Thus, it is
unlikely that a counterpart of Fig. 8 could be plotted; as can be seen in Fig. 9, filtering errors would dominate
the discretization ones unless one started with a Level0 mesh of 400 � 400 - at which point, the solution will
be resolved well enough on the Level0 mesh not to result in Runge phenomenon (and consequently, there
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Figure 9. The RMS difference between numerical and exact solution
for the FitzHugh-Nagumo equations solved on a N � N uniform mesh
using pD � 6 with filters of order pF � 8 � 10 and 12. Errors from runs
without filtering are also plotted. � � � ��� are used to denote pF � 8 � 10
and 12 results;

�
is used for runs without filtering.

would be no need for filtering).

However, the choice of pD in a scientific simulation will probably be made on grounds of accuracy and/or
resolution requirements rather than the ability to show the theoretical convergence. Consequently, we redo
the problems in Sec. 3.2.1 with pD

� 6, with the same filters and compare with the pD
� 4 runs. ∆t is

kept the same, but pI
� 6 is used, in keeping with the findings in [20]. Using pI

� 8 with pD
� 4 made

no difference in the results. In Fig. 10 only errors on Level0 are plotted; errors on other levels are very
similar, as seen for � pD � th runs in Fig. 8. On a uniform 100 � 100 mesh, the filter errors dominate and
there is little difference between the pD

� 4 and 6 runs. As levels of refinement are added, both the filter
and discretization errors decrease, but at different rates. Even at one level of refinement, the discretization
errors dominate for the pD

� 4 runs and the difference between the � pD
� 4 � pF

� 8 � and � pD
� 4 � pF

� 10 �
are insignificant. Not surprisingly, a fourth-order convergence is seen. This is not the case in the pD

� 6
results; there is a significant difference in the results computed with pF

� 8 and 10, indicating that the filter
errors are dominant. It is only at three levels of refinement that the results become comparable. However,
except for the Level0 run, pD

� 6 errors are mostly smaller than pD
� 4 errors, thus recovering some of the

advantages of using a high-order method.
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Figure 10. Comparison of the RMS difference between exact and nu-
merical solutions of the FitzHugh-Nagumo equations when computed
with pD � 4 � pI � 8 and pD � 6 � pI � 8 and filtered with filters of order
pF � 8 and 10. ∆t � 10 � 6 and the problem is integrated till t � 4 � 10 � 4.
Results are plotted for a uniform mesh and meshes with 1 to 3 levels of
refinement with a Level0 mesh of 100 � 100. � and � indicate pF � 8
and 10; dashed lines indicate pD � 4 and solid ones pD � 6. E0 is the
RMS error on Level0.

4 Conclusions

We have developed expressions for high-order discretizations, interpolations, and filters, in multiple dimen-
sions, using a Fourier approach. This particular choice, as opposed to the traditional Taylor series approach,
enables implementation of these high-order operations in higher dimensions with relative ease. We also
provided a brief Mathematica [26] program that produces the necessary code for all these high-order oper-
ations. We demonstrated the implementation of these high-order constructions on three model problems in
one and two-dimensions.

We also derived a formulation/rule for the requisite interpolation order for given discretization and derivative
orders. We examined this rule empirically by pairing high-order stencils and interpolations on SAMR grid
hierarchies and examining high-order convergence where analytical results were available. Achieving such
a convergence requires care in the choosing of the filters and interpolants.

� For the simple boundary conditions used here time-instability near the boundaries was not observed,
at least with the fourth and sixth order approaches investigated in this paper.

� Oscillations in the solution caused by high-order interpolants, due to insufficient resolution, was in-
deed a problem. As a part of the solution procedure, solutions are generated at all grid points on all
levels, even though the solution in the overlaid areas is later discarded (during restrictions). During
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this process, oscillatory interpolated values were generated by the high order interpolants, usually on
Level1 and Level2, leading to the Runge phenomenon. Filters remove this problem but introduce
dissipation errors, and consequently need to be chosen with care. In some cases they may dom-
inate the discretization errors, depending on the grid resolution and discretization order. Since in
block-structured AMR there will be patches/grids with low resolution, filters may turn out to be as
important a factor in determining accuracy as the discretizations.

Combined with [20], this paper presents an alternative approach to the one developed in [3]. Our method,
vis-a-vis [3], trades off one complexity versus another. While the high-order 1D interpolations in [3] are
far simpler than our multi-dimensional ones, their application requires book-keeping viz. tracking (a) patch
configurations and (b) tangential and normal directions to a coarse-fine boundary, whereas we use our inter-
polations uniformly. Also, unlike [3], we have no requirement in principle that the refinement ratio between
levels be any particular value, although the practical complexities of deriving and implementing the high-
order multidimensional interpolations have led us to use a fixed refinement factor of 2 in the present work.
This also ensures that the difference in (resolvable) wavenumber spectra between successive levels of refine-
ment are kept manageable. While this is not much of a problem in vertex centered grids where restrictions
(interpolating the fine mesh solution to the coarse mesh) are mere injections, cell-centered grids require
interpolations to be performed and care must be taken not to transfer high wavenumbers’ energies to lower
ones while interpolating. This is obviously simpler if the wavenumber spectra are not too different. How-
ever, the ramifications of the choice (2 versus 4) of the level-to-level refinement factor, within the context of
high order AMR, needs a systematic study. Furthermore, as shown in Sec. 3, our interpolations have con-
sistently provided high-order convergence even when the coarse-fine boundary was placed, on purpose, in a
region of high gradient. While such an eventuality is not likely in an AMR simulation, the threshold-based
refinement-derefinement criteria does not guarantee against it and the high-order interpolations serve as a
fallback in borderline resolution cases.

In conclusion, high-order methods, coupled with AMR, hold the potential to perform high-accuracy simu-
lations economically. These methods, as presented in this paper, are quite general - discretizations, filters
and interpolations of any order n may be generated using the expressions developed here. There are neither
special cases nor assumptions and/or constructions predicated on a specific choice of stencils. Replace-
ments of interpolations etc are effected simply by replacing subroutines. [20] presented a comparison of
the computational work, i.e. the floating point operations required for the same problem with second and
fourth-order discretizations. The difference between the two, even at modest accuracy requirements (0.1 -
1 %), is significant in favor of the fourth order approach. At tighter accuracies, the difference is startling.
This is observed in [3] too. A degree of care needs to be exercised when choosing the interpolants and
filters needed in such computations, and we have indicated some principles in this paper. We see that errors
introduced by filters may become the determining factor as far as accuracy is concerned, but this will happen
at high discretization orders.
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A Stencil coefficient computation

Below is a Mathematica[26] program that may be used to generate a FORTRAN77 file containing all bound-
ary and interior stencils discussed in this paper. On a workstation having dual 2.2GHz processors, fourth-,
sixth, eighth-, and tenth-order stencils require approximately 1, 8, 29, and 189 seconds to compute. First,
write individual stencils as functions.

(* Second-Order *)
Psi2I[a ]:=Cos[a/2];
Psi2a[a ]:=(Cos[a]+I*Sin[a])*(Cos[a/2]+I*(-2*Sin[a/2]));

(* Fourth-Order *)
Psi4I[a ]:=Cos[a/2]*(-5+Cos[a])/4;
Psi4a[a ]:=(Cos[a]+I*Sin[a])*(5*Cos[a/2]+3*Cos[3*a/2]+
I*(-10*Sin[a/2]-2*Sin[3*a/2]))/8;
Psi4b[a ]:=Cos[2*a]+I*Sin[2*a])*(7*Cos[a/2]-15*Cos[3*a/2]+
I*(-28*Sin[a/2]+20*Sin[3*a/2]))/8;

(* Sixth-Order *)
Psi6I[a ]:=Cos[a/2]*(89-28*Cos[a]+3*Cos[2*a])/64;
Psi6a[a ]:=(Cos[a]+I*Sin[a])*(70*Cos[a/2]+63*Cos[3*a/2]-5*Cos[5*a/2]+
I*(-140*Sin[a/2]-42*Sin[3*a/2]+2*Sin[5*a/2]))/128;
Psi6b[a ]:=Cos[2*a]+I*Sin[2*a])*(42*Cos[a/2]-135*Cos[3*a/2]-35*Cos[5*a/2]+
I*(-168*Sin[a/2]+180*Sin[3*a/2]+28*Sin[5*a/2]))/128;
Psi6c[a ]:=(Cos[3*a]+I*Sin[3*a])*(198*Cos[a/2]-385*Cos[3*a/2]+315*Cos[5*a/2]+
I*(-1188*Sin[a/2]+770*Sin[3*a/2]-378*Sin[5*a/2]))/128;

(* Eighth-Order *)
Psi8I[a ]:=Cos[a/2]*(-762+299*Cos[a]-54*Cos[2*a]+5*Cos[3*a])/512;
Psi8a[a ]:=(Cos[a]+I*Sin[a])*(525*Cos[a/2]+567*Cos[3*a/2]-75*Cos[5*a/2]+
7*Cos[7*a/2]+I*(-1050*Sin[a/2]-378*Sin[3*a/2]+30*Sin[5*a/2]-
2*Sin[7*a/2]))/1024;
Psi8b[a ]:=Cos[2*a]+I*Sin[2*a])*
(231*Cos[a/2]-891*Cos[3*a/2]-385*Cos[5*a/2]+21*Cos[7*a/2]+
I*(-924*Sin[a/2]+1188*Sin[3*a/2]+308*Sin[5*a/2]-12*Sin[7*a/2]))/1024;
Psi8c[a ]:=(Cos[3*a]+I*Sin[3*a])*(429*Cos[a/2]-1001*Cos[3*a/2]+1365*Cos[5*a/2]+
231*Cos[7*a/2]+I*(-2574*Sin[a/2]+2002*Sin[3*a/2]-1638*Sin[5*a/2]-
198*Sin[7*a/2]))/1024;
Psi8d[a ]:=Cos[4*a]+I*Sin[4*a])*(3575*Cos[a/2]-7371*Cos[3*a/2]+5775*Cos[5*a/2]- 3003*Cos[7*a/2]+I*(-28600*Sin[a/2]+19656*Sin[3*a/2]-9240*Sin[5*a/2]+
3432*Sin[7*a/2]))/1024;

(* Tenth-Order *)
Psi10I[a ]:=Cos[a/2]*(25609-11528*Cos[a]+2708*Cos[2*a]-440*Cos[3*a]+
35*Cos[4*a])/16384;
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Psi10a[a ]:=(Cos[a]+I*Sin[a])*(16170*Cos[a/2]+19404*Cos[3*a/2]-
3300*Cos[5*a/2]+539*Cos[7*a/2]-45*Cos[9*a/2]+I*(-32340*Sin[a/2]-
12936*Sin[3*a/2]+1320*Sin[5*a/2]-154*Sin[7*a/2]+10*Sin[9*a/2]))/32768;
Psi10b[a ]:=-(Cos[2*a]+I*Sin[2*a])*(6006*Cos[a/2]-25740*Cos[3*a/2]-
14300*Cos[5*a/2]+1365*Cos[7*a/2]-99*Cos[9*a/2]+I*(-24024*Sin[a/2]+
34320*Sin[3*a/2]+11440*Sin[5*a/2]-780*Sin[7*a/2]+44*Sin[9*a/2]))/32768;
Psi10c[a ]:=(Cos[3*a]+I*Sin[3*a])*(7722*Cos[a/2]-20020*Cos[3*a/2]+
35100*Cos[5*a/2]+10395*Cos[7*a/2]-429*Cos[9*a/2]+I*(-46332*Sin[a/2]+
40040*Sin[3*a/2]-42120*Sin[5*a/2]-8910*Sin[7*a/2]+286*Sin[9*a/2]))/32768;
Psi10d[a ]:=-(Cos[4*a]+I*Sin[4*a])*(24310*Cos[a/2]-55692*Cos[3*a/2]+
56100*Cos[5*a/2]-51051*Cos[7*a/2]-6435*Cos[9*a/2]+I*(-194480*Sin[a/2]+
148512*Sin[3*a/2]-89760*Sin[5*a/2]+58344*Sin[7*a/2]+5720*Sin[9*a/2]))/32768;
Psi10e[a ]:=(Cos[5*a]+I*Sin[5*a])*(293930*Cos[a/2]-639540*Cos[3*a/2]+
554268*Cos[5*a/2]-285285*Cos[7*a/2]+109395*Cos[9*a/2]+I*(-2939300*Sin[a/2]+
2131800*Sin[3*a/2]-1108536*Sin[5*a/2]+407550*Sin[7*a/2]-121550*Sin[9*a/2]))/32768;

Next, set desired parameters. This is the only section of the code that needs to be modified by the user. In
the following example, we wish to compute a fourth-order stencil for a point shifted from the center by zero
grid points in x, Ψ4

�
x �

I , one in y, Ψ4
�
y �� , and two in z, Ψ4

�
z �� , or Ψ4

�
xyz �

I �
�

�

� .

(* Specify stencil *)
order = 4;
Psi = Expand[ TrigToExp[ Psi4I[x]*Psi4a[y]*Psi4b[z] ] ];
ix = 0; iy = 1; iz = 2;

Alternatively, we could compute the stencil Ψ8
�
xyz ��

� � � � by writing

(* Specify stencil *)
order = 8;
Psi = Expand[ TrigToExp[ Psi8b[x]*Psi8c[y]*Psi8d[z] ] ];
ix = 2; iy = 3; iz = 4;

Now the actual stencil coefficients are computed and printed to the screen in FORTRAN77 format.

(* Compute stencil *)
leftx=-(order-1)+2*ix;

38



lefty=-(order-1)+2*iy;
leftz=-(order-1)+2*iz;
psi = Expand[ Factor[ Normal[ Series[ Psi, � x,0,order � , � y,0,order � , � z,0,order � ]]]];
Print[" psi = ", psi ];
psilistx = CoefficientList[ psi - 1,x] /. � y -> 0, z -> 0 � ;
psilisty = CoefficientList[ psi - 1,y] /. � x -> 0, z -> 0 � ;
psilistz = CoefficientList[ psi - 1,z] /. � x -> 0, y -> 0 � ;
actualorder = Sum[ (psilistx[[i]]+psilisty[[i]]+psilistz[[i]]), � i,1,order-1 � ];
Do[
Print["Do loop counter = ", k];
Do[
Do[ bnd[i,j,k] = ExpToTrig[ Expand[
Psi*Exp[-I*(leftx+2*(i-1))*x/2]*Exp[-I*(lefty+2*(j-1))*y/2]*Exp[-I*(leftz+2*(k-1))*z/2]]];
, � i,1,order � ];
x = 3; y = 17; z = 9973;
Do[ bnd[i,j,k] = Part[ bnd[i,j,k], 1 ];, � i,1,order � ];
, � j,1,order � ]; , � k,1,order � ];
denominator = Part[ � 8,2ˆ(12),2ˆ(24),2ˆ(33),2ˆ(48),2ˆ(58) � , order/2];
letters = � I,a,b,c,d,e,f � ;
Do[ bnd[i,j,k] = Factor[ denominator*bnd[i,j,k] ];,� i,1,order � , � j,1,order � , � k,1,order � ];
Do[ Print[" bnd",order,Part[letters,ix+1],Part[letters,iy+1],Part[letters,iz+1],
"(",i,",",j,",",k,") = ", bnd[i,j,k],".d0/",denominator,".d0" ];,� i,1,order � , � j,1,order � , � k,1,order � ];
If[ actualorder == 0, Print["Stencil is correct"], Print["Stencil is wrong"]];
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B Interior Stencils for 3D interpolants

Stencil 2nd-order 4th-order 6th-order 8th- order 10th-order
aaa 1/8 729/212 3375000/224 1838265625/233 62523502209000/248

baa 0 -81/212 -562500/224 -367653125/233 -13894111602000/248

bba 0 9/212 93750/224 73530625/233 3087580356000/248

bbb 0 -1/212 -15625/224 -14706125/233 -686128968000/248

caa 0 0 67500/224 73530625/233 3572771554800/248

cba 0 0 -11250/224 -14706125/233 -793949234400/248

cbb 0 0 1875/224 2941225/233 176433163200/248

cca 0 0 1350/224 2941225/233 204158374560/248

ccb 0 0 -225/224 -588245/233 -45368527680/248

ccc 0 0 27/224 117649/233 11666192832/248

daa 0 0 0 -7503125/233 -637994920500/248

dba 0 0 0 1500625/233 141776649000/248

dbb 0 0 0 -300125/233 -31505922000/248

dca 0 0 0 -300125/233 -36456852600/248

dcb 0 0 0 60025/233 8101522800/248

dcc 0 0 0 -12005/233 -2083248720/248

dda 0 0 0 30625/233 6510152250/248

ddb 0 0 0 -6125/233 -1446700500/248

ddc 0 0 0 1225/233 372008700/248

ddd 0 0 0 -125/233 -66430125/248

eaa 0 0 0 0 55135363500/248

eba 0 0 0 0 -12252303000/248

ebb 0 0 0 0 2722734000/248

eca 0 0 0 0 3150592200/248

ecb 0 0 0 0 -700131600/248

ecc 0 0 0 0 180033840/248

eda 0 0 0 0 -562605750/248

edb 0 0 0 0 125023500/248

edc 0 0 0 0 -32148900/248

edd 0 0 0 0 5740875/248

eea 0 0 0 0 48620250/248

eeb 0 0 0 0 -10804500/248

eec 0 0 0 0 2778300/248

eed 0 0 0 0 -496125/248

eee 0 0 0 0 42875/248

ψN � N � N ξNηNζN -(1/8)ξ2 -(3/128)ξ4 -(5/1024)ξ6 -(35/32768)ξ8 -(63/262144)ξ10

-(1/8)η2 -(3/128)η4 -(5/1024)η6 -(35/32768)η8 -(63/262144)η10

-(1/8)ζ2 -(3/128)ζ4 -(5/1024)ζ6 -(35/32768)ζ8 -(63/262144)ζ10

Table B.1. Coefficients of three-dimensional, vertex-centered inter-
polants in terms of ξ, η, and ζ.
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C Rules for pairing a derivative and an interpolation stencil

In this section we determine a rule to pair a spatial derivative stencils of order P with an interpolation of
order Q given that the higher spatial derivative that needs to be evaluated is R.

G1

G2

H2

B

A

Figure C.1. Two overlaid patches G1 and G2. G2 is finer and has a
halo H2 around it to facilitate the evaluation of discrete derivatives via
stencils. Points A and B lie on the finer G2 patch.

Let φ
�
R � be the Rth derivative of φ in the domain A , the patch G2 in Fig. C.1. Let D

�
R �

P be a discrete operator
(a stencil) that, when applied at a point in A evaluates the derivative with an error proportional to � ∆x � P. We
will analyze only in the x-direction where points are indexed using i; the results will carry over to higher
dimensional space.

Applying this at point B in Fig. C.1 poses no problems,

φ
�
R �

B
� D

�
R �

P � φB �
� ∆x � R � ε1 � ∆xP � (32)

�
D
�
R �

P � � � � � φi
�

1 � φi � φi � 1 � � � � �
� ∆x � R � ε1 � ∆xP �

as long as the stencil has enough points on the left and right. At A however, the stencil “spills” over into the
coarser G1 patch.

Typically, in order not to use skewed stencils, one keeps a halo H2 of points around G2, where data is
interpolated from G1 with an interpolant of order Q. Let these interpolated φ be called φ̃ i.e

φ̃ � φ � ε2 � ∆xQ �
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Thus we evaluate φ
�
R �

A as

φ
�
R �

A
�

D
�
R �

P � φA �
� ∆x � R � ε1 � ∆xP � (33)

�
D
�
R �

P � � � � � φi
�

1 � φi � φ̃i � 1 � � � � �
� ∆x � R � ε1 � ∆xP �

� D
�
R �

P � � � � � φi
�

1 � φi � φi � 1 � � � � �
� ∆x � R � ε1 � ∆xP � � ε3 � ∆xQ

�
R �

That ε1 � ∆xP � and ε3 � ∆xQ
�

R � be of the same order requires

Q � P � R � (34)

This is sufficient to allow Pth order convergence of φ
�
R � . Note that ε1 exists over A while ε3 exists only

along ∂A , its boundary, a domain of dimension one less than A .

However, the requirement above can be relaxed. Often, errors are measured, integrated and analyzed in a
certain area. This was also the case in this paper. Thus,

E �

�
A

ε1 � ∆xP � dA �
�

∂A
ε3 � ∆xQ

�
R � ds (35)

� E1 � ∆xP
�

2 � � E3 � ∆xQ
�

R
�

1 �

if A is 2D. If A is 3D, the right hand side is E1 � ∆xP
�

3 � � E3 � ∆xQ
�

R
�

2 � . In order that E1 and E3 have the
same convergence rates,

Q � P � R � 1 � (36)

Strictly speaking, Eq. 36 will ensure Pth order convergence of φ
�
R � in a global sense if ∂A is one grid point

in thickness. For our high-order discretizations, this is not the case; interpolations are done in a thin region
of half the stencil width. Thus it is unclear whether Eq. 34 or Eq. 36 is preferable, but Eq. 34 should be
sufficient.
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